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Abstract

Mechanisms of dietary micronutrients and personal characteristics of the human body are intricately complicated. 
These mechanisms, however, can be easily interpreted through appropriate mathematical relationships. The 
present study aims to detect the statistically significant impact of personal characteristics and diet on plasma 
concentrations of retinol and beta-carotene using statistical modeling. The present analyses indicate that age, 
sex, smoking habit, quetelet, vitamin use, consumed calories, fiber, and dietary beta-carotene are statistically 
significant factors on plasma beta-carotene levels. On the other hand age, sex, smoking status, consumed fat, 
and dietary beta-carotene are significant factors on plasma retinol. These analyses indicate that changes in the 
variances of plasma beta-carotene and retinol are non-constant. Impacts of personal characteristics and dietary 
factors on human plasma concentrations of retinol and beta-carotene are explained based on mathematical 
relationships. These analyses support many earlier researches findings. However, the analyses also identify 
many additional casual factors that explain the means and variances of plasma beta-carotene and retinol, which 
earlier researches have not reported.

Introduction

Epidemiological research often seeks to identify causal 
relationships between risk factors and diseases.  It is 
well known that low  human plasma concentrations of 
retinol, beta-carotene, or other carotenoids are strongly 
associated with an increased risk of developing cancer [1-
4]. However, lower retinol levels may be a consequence 
of rather than a cause of invasive cancer [2].Some studies 
have been conducted to detect the determinants of 
human plasma concentrations of beta-carotene and 
retinol levels [1, 5]. A few earlier researches have reported 
that some dietary factors and personal characteristics are 

highly associated with plasma carotene levels [6-8]. 
Higher dietary intake of green and yellow leafy vegetables, 
for example, tend to increase plasma beta-carotene  levels 
[9-11]. Compared to men, women have been reported to 
have higher plasma levels of retinol, beta-carotene, and 
other carotenoids [12-13]. Supplemental vitamin users 
were found to have higher levels [3-4, 14], while those 
who smoke cigarettes and consume alcohol have been 
reported to have lower beta-plasma concentrations [12, 
15, 16]. Cancer researchers have aimed to identify the 
determinants of plasma concentrations of carotenoids, as 
low levels are significantly related to the development of 
cancer. Many researches have focused on the relationships 
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between beta-carotene levels, age, and obesity [3,12,14]. 
Many of the relationships  researchers have sought 

to identify between carotenoids and diseases are still 
unclear and inconclusive. The reason is that evidences 
are insufficient or conflicting.  Generally, validated 
relationships are established based on statistical 
analysis. Some previously reported statistical analyses 
indicate that certain relationships between carotenoids 
and disease are inconsistent. For a better understanding 
of these relationships, further studies are indispensable.  
The functional   relationship is considered a probabilistic 
(regression or generalized linear model (GLM)) model 
that provides an approximation to relatively more 
complex phenomenon [17-20]. If the univariate response 
data are independent or dependent, heteroscedastic 
(non-constant variance) and belong to exponential 
family, both the mean and variance need to be modeled 
simultaneously,  using link functions for natural mean 
and variance. This modeling approach  is known as joint 
generalized linear model (JGLM) [21].

Generally, continuous positive observations  belong 
to an exponential distribution, and their variances 
may or may not be constant, as the observations have 
variance-to-mean relationships. The problem of non-
constant variance (for the response variable y) in linear 
regression is a departure from the standard least squares 
assumptions. This problem of inequality of variance 
occurs often in practice, frequently in conjunction 
with a non-normal response variable. To minimize the 
problem, an appropriate method is to transform the 
response variable to stabilize variance. This makes the 
distribution of the response variable closer to the normal 
distribution, and it improves the fit of the model to the 
data. However, in practice, the proper transformation 
may not always stabilize the variance [20, 22]. Thus, for 
analysis of positive data with non-constant variance, it 
is crucial to use joint generalized linear models (JGLMs) 
(modeling of mean and variance simultaneously) to 
identify the significant factors of the process [21, 22]. 
Joint GLM (along with their relevant references) for log-
normal models are described in the materials and methods 
section.

Nierenberg et al. [5] studied  the personal 
characteristics and dietary effects on plasma beta-
carotene and retinol concentrations based on the data 
described in results section. To identify the appropriate 
model, the investigators used many statistical techniques, 
namely, multiple regression analysis, least squares method, 
multicollinearity checking  tools, outliers  detection tools, 
variance stabilization transformation, model selection 
criteria, and others. Nierenberg et al. [5] also noticed 
that the variance of the response (plasma beta-carotene 
concentration) was non-constant, and its  distribution 
was non-normal. Therefore, the investigators used 

logarithm transformation of the plasma beta-carotene 
concentrations to stabilize variance and to reduce the 
distribution close to normal. Final data analyses have 
been done using log-transformation by the least squares 
method. Unfortunately, model fit (or index of fit) criteria 
measures multiple correlation (R2) and adjusted multiple 
correlation (R2

adj) are very small for the three derived 
fitted models. Specially, the maximum value of (R2) and 
(R2

adj) for the three derived fitted models are 0.2714 and 
0.2466, respectively. These values clearly indicate that 
the three derived fitted models represent only some weak 
relationships, which may be improved further.

For heteroscedastic data, log-transformation is 
often recommended for stabilizing the variance [23]. In 
practice, though, the variance is not always stabilized by 
this method [20]. For example, Myers et al. [20] analyzed 
“The Worsted Yarn Data” using a usual (errors are 
uncorrelated and homoscedastic) second order response 
surface design. Myers et al. [20] treated the response 
(y=T) as the cycles to failure (T), and also noticed that 
the variance  was non-constant and the analysis was 
incorrect.  Then using log transformation of the cycles 
to failure (i.e., y=lnT), the final data analysis had been 
done, and it was found that log model,  overall, was 
an improvement over the original quadratic fit. The 
researchers noticed, however, that there was still some 
indication of inequality of variance. Recently, Das and 
Lee [22] showed that simple log transformation was 
insufficient to reduce the variance constant, and the 
investigators analyzed the data using joint generalized 
linear models. This study found that many factors were 
significant and that log-normal distribution was more 
appropriate. For non-constant variance of response, 
classical regression technique gives inefficient analysis, 
often resulting in  an error so that significant factors are 
classified as insignificant.   For instance, the analysis by 
Myers et al. [20] missed many important factors of the 
process.  “This error is serious in any data analysis”.  The  
present authors notice that the original data set is positive, 
variance of the response is non-constant, distribution 
is non-normal, and model fit criteria measures are very 
small. These observations  motivated us to take up this 
present study. 

In medical research, it is very important to derive 
the relationship between causal factors and the disease. 
In statistical literature, models are mainly focused on 
the mean. The modeling of the dispersion has often been 
neglected.  Analysis based on the constant variance 
assumption when, in fact, variance is non-constant can 
give inefficient analysis of the mean, often resulting  
in an error so that significant factors are classified 
as insignificant. For example, the data analysis by 
Nierenberg et al. [5] missed many important factors. 
This is very serious in medical treatments because a 
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wrong selection of causal factors may risk patients’ lives. 
Therefore, it is crucial to use the appropriate statistical 
method to identify significant factors for deriving 
relationships. This article uses the joint modeling of 
mean  and dispersion for detecting the relationship of 
dietary factors  and personal characteristics to human 
plasma carotene concentrations.

Present study analyzes the relationship of two 
response variables (plasma beta-carotene and retinol) to 
the explanatory variables of dietary factors and personal 
characteristics. It is identified that variances of these two 
response variables are non-constant. Consequently, two 
models are derived, one for the plasma beta-carotene and 
the other for plasma retinol. Present analyses identify 
the following: Mean plasma levels of beta-carotene is 
explained by the statistically significant factors age, 
sex, smoking status, quetelet  index (weight/height2), 
vitamin use status, consumed calories, and fiber intake.   
As age increases, plasma beta-carotene levels increases. 
Female sex is positively associated with  plasma beta-
carotene; and regular vitamin and fiber intake increase 
plasma beta-carotene. On the other hand, increased 
calorie consumption, quetelet index, and current 
smoking status decrease mean plasma beta-carotene 
levels. Variance of plasma beta-carotene is increased by 
increased beta-carotene consumption.  It is also shown to 
be decreased by higher fiber intake and no regular vitamin 
use status. Mean plasma retinol increases with  age and 
former smoking status, but decreases only with increased 
fat consumption. Plasma retinol variance increases with 
increased beta-carotene intake, and is decreased in 
females in comparison to males. 

Results

A. Data: Plasma data set under the present study 
contains 315 observations on 14 variables. Study subjects  
(N=315)  were patients  who had an elective surgical 
procedure during a three-year period to  biopsy or remove 
a lesion of the lung, colon, breast, skin, ovary, or uterus.  
The lesions were all found to be non-cancerous.  The 
related reference to this data set is Nierenberg et al. [5]. 
Source of the data set is at (http://biostat.mc.vanderbilt.
edu/twiki/bin/view/Main/DataSets?CGISESSID=10713f  
6d891653ddcbb7ddbdd9cffb79). This annotated S data 
frame was prepared by Hong Yu, a graduate student at the 
University of Virginia, December14, 2002. 

B. Variables: Table 1 presents a description of each 
set of items and how they are operationalized  for the 
present study.

1. Dependent variables: The dependent variables in 
the present study are the plasma beta-carotene and retinol 
levels (Table 1).

2. Independent variables: There are two sets of 
independent variables,  qualitative and quantitative. Three 
independent variables (sex, smoking status, and vitamin 
use) are qualitative and the remaining nine are continuous 
variables. 

Descriptive Statistics
This data set contains 42 (13.3%) male and 273 

(86.7%) female patients.  Number of subjects in the groups 
for never smokers, former smokers, current smokers are 
157 (49.8%), 115 (36.5%),  43 (13.7%) respectively and 
for vitamin users (yes, fairly often), (yes, not often), (no) 

Table 1. Operationalization of variables in the analysis.

Domain/Variable Name Operationalization

AGE(x1) Age(years)
SEX(A) Sex (1=Male (42 (13.3%)), 2=Female (273 (86.7%))

SMOKSTAT(B) Smoking status (1=Never (157 (49.8%)), 2=Former (115 (36.5%)), 
3= Current Smoker (43 (13.7%))

QUETELET(x4) Quetelet (weight/height2)
VITUSE(C) Vitamin Use (1=Yes, fairly often (122 (38.7%)), 2=Yes, not often  (82 (26.0%)), 

3=No (111 (35.3%)))
CALORIES(x6) Number of calories consumed per day

FAT(x7) Grams of fat consumed per day
FIBER(x8) Grams of  fiber consumed per day

ALCOHOL(x9) Number of alcoholic drinks consumed per week
CHOLESTEROL(x10) Cholesterol consumed (mg per day)

BETADIET(x11) Dietary beta-carotene consumed (µgper day)
RETADIET(x12) Dietary retinol consumed (µg per day)
BETAPLASMA Plasmabeta-carotene (ng/ml)–Dependentvariable
RETAPLASMA Plasma retinol (ng/ml)–Dependent variable
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Table 2. Means and standard deviation of all variables in the analysis.

Domain/Variable Name Mean Standard deviation (s.d.)

AGE 50.1460 14.5752
SEX 1.8667 0.3405

SMOKSTAT 1.6381 0.7110
QUETELET 26.1577 6.0136

VITUSE 1.9651 0.8607
CALORIES 1796.6546 680.3474

FAT 77.0333 33.8294
FIBER 12.7886 5.53302

ALCOHOL 3.2794 12.3229
CHOLESTEROL 242.4606 131.9916

BETADIET 2185.6032 1473.8865
RETADIET 832.7143 589.2890

BETAPLASMA 190.2127 182.7554
RETAPLASMA 602.7905 208.8955

Table 3. Mean (M.) and standard deviation (s.d.) of plasma beta-carotene (Betplas) and plasma retinol (Retplas) with respect to mean 
of age, and levels of sex and smoking status.

Variable Age(≤ 50) Age(> 50) Sex1 Sex2 Smokst1 Smokst2 Smokst3

M.Betplas 189.5956 191.0682 148.6667 196.6044 206.6943  193.4696 121.3256
s.d.Betplas 199.5733 157.2258 133.6000 188.5704 192.6855 191.6395 78.8116
M.Retplas 564.5902 655.7500 700.7381 587.7216 583.3057 644.2435 563.0698
s.d.Retplas 186.8019 226.3884 307.8088 185.4307 187.6431 231.1676 206.5778

are 122 (38.7%), 82 (26.0%), 111 (35.3%) respectively 
(Table 1).

Table 3 shows that both the levels of  beta-carotene 
and retinol increase with age, indicating that both the 
dependent variables may be positively associated with 
the factor age.  Mean beta-carotene and retinol  levels 
are respectively higher in females and males. Mean 
beta-carotene levels is the highest for “never smoking 
status group”. The order of beta-carotene levels was as 
follow from highest to lowest: never > former > current 
smoking status. Mean retinol concentration is the 
highest for former smoking status, and is independent 
at the other two smoking groups.  Tables 4 and 5 show 
that both the mean levels of beta-carotene and retinol 
decrease with quetelet and fat consumed, indicating 
that they may be negatively  associated separately with 
quetelet and fat intake.  Both  the mean  levels of beta-
carotene and retinol are maximum  at vitamin  use (1 
= yes, fairly often), and seem to be decreasing with 
respect  to (1 = yes, fairly often),  (2 = yes, not often) 
and (3 = no) vitamin  use status  (Table 4). Table 5 shows 
that the mean  levels of beta-carotene increases, while 
retinol concentration decreases with fiber intake.  Both 

the mean levels of beta-carotene and retinol increase 
with the increased alcohol consumption (Table 5).  
Mean levels of plasma beta-carotene decreases, while 
the mean retinol levels is indifferent with cholesterol 
intake (Table 6). Table 6 also shows that the mean 
levels of beta-carotene increases, while the mean 
retinol levels decreases with the beta-carotene diet 
intake. Beta-carotene and retinol mean concentrations 
decrease with the consumed retadiet and calories (Table 
7). Standard deviations of both the beta-carotene and 
retinol concentrations change along with most  of 
the  explanatory  variables,  indicating  that  both the 
variances  may be non-constant (Tables  3-7).  Tables  3-7, 
show the behavior  of both  the  dependent  variables,  
plasma  levels of beta-carotene and  retinol,  in relation  to 
the independent variables.

Beta-carotene Plasma Levels Data Analysis
This subsection analyzes plasma levels of beta-
carotene, treating it  as the response variable, in relation 
to the  12 covariates (Table 1) as explanatory variables.  
There  are  three qualitative characters (factors) and 
nine continuous variables. For factors, the constraint 
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Table 6. Mean (M.) and standard deviation (s.d.) of plasma beta-carotene (Betplas) and plasma retinol (Retplas) with respect to mean 
of cholesterol and dietary beta-carotene.

Variable Chol (≤ 242) Chol (> 242) Beta diet (≤ 2185) Beta diet (> 2185)

M.Betplas 211.9681 158.0079 165.7302 226.9365
s.d.Betplas 210.5996 125.1314 134.2669 233.4960
M.Retplas 602.3032 603.5118 615.8889 583.1429
s.d.Retplas 207.9247 211.1476 208.7302 208.4268

Table 7. Mean (M.) and standard deviation (s.d.) of plasma beta-carotene (Betplas) and plasma retinol (Retplas) with respect to mean 
of consumed dietary retinol and calories.

Variable Reta diet (≤ 832) Reta diet (> 832) Calo (≤ 1796) Calo (> 1796)

M.Betpla 200.5319 174.9370 191.0278 189.1259
s.d.Betpla 206.8746 139.0083 178.3465 189.1385
M.Retpla 606.8883 596.7244 608.5889 595.0593
s.d.Retpla 211.3800 205.8441 209.8773 208.1065

Table 4. Mean (M.) and standard deviation (s.d.) of plasma beta-carotene (Betplas) and plasma retinol (Retplas) with respect to mean 
of quetelet and levels of vitamin use.

Variable Quet (≤ 26) Quet (> 26) Vitau 1 Vitau 2 Vitau 3

M.Betplas 224.6995 135.6557 241.7869 185.6585 136.8919
s.d.Betplas 215.5174 89.8490 244.4178 144.1367 92.1611
M.Retplas 606.5078 596.9098 613.1639 597.2683 595.4685
s.d.Retplas 211.4711 205.4825 223.8304 192.0211 205.2004

Table 5. Mean (M.) and standard deviation (s.d.) of plasma beta-carotene (Betplas) and plasma retinol (Retplas) with respect to mean 
of fat, fiber, alcohol.

Variable Fat (≤ 77) fat(> 77) fiber (≤ 12) fiber (> 12) Alco (≤ 3.0) Alco (> 3.0)

M.Betplas 203.6056 172.3556 164.1677 215.4437 181.1245 216.0366
s.d.Betplas 198.9673 157.5433 152.4681 205.2837 163.0144 229.0189
M.Retplas 611.6111 591.0296 618.2387 587.8250 579.8927 667.8537
s.d.Retplas 206.0704 212.8030 216.0412 201.2778 186.9810 215.4568

that the effects of the first levels are zero is accepted. 
Therefore, it is taken that the first level of each factor as 
the reference level by estimating it as zero. Suppose that  
αi for  i=1,2,3 represents the main effect of A. It is taken 
α̂1=0, so that 2α̂ = 2α̂ –α̂1. For example, the estimate of 
the effect  A2 means the effect of difference between 
the second and the first levels in the main effect A, i.e.,  

2α̂ –α̂1.
The present article aims to examine the effects of 

different personal characteristics and dietary factors 
(explanatory variables) on plasma levels of beta-
carotene, treated as the response variable. Thus, joint 
log-normal model (in materials and methods section)  is 
fitted, and the results are displayed in Table 8. The selected 

models have the smallest Akaike information criterion 
(AIC) value in each class. It is well known that AIC 
selects a model which minimizes the predicted additive 
errors and squared error loss (Hastie et al., [24], p. 203-
204). The value of AIC of the selected model (Table 2) is 
3732.0+2×15 = 3762.0.

Figure 1(a) displays the histogram of residuals.  It  
does not  show any  lack of fit for missing variables. 
Figure 1(b) presents the absolute residuals plot with 
respect to fitted values. This is a flat diagram with the 
running mean, indicating that variance is constant under 
joint GLM log-normal fitting. Figure 2(a) and Figure 2(b), 
respectively, display the normal probability plot for the 
mean and the variance model in Table 2. Neither figure 
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Figure 1. (a) The histogram plot of residuals and (b) the absolute residuals plot with respect to fitted values for plasma beta-
carotene data (Table 2).

Table 8. Results for mean and dispersion models of plasma beta-carotene data from log-normal fit.

Mean 
Model

Covariate Estimate s.e. t P-value 95%C.I.
Constant 5.2161 0.31122 16.760 <0.001 4.606-5.826

AGE 0.0074 0.00277 2.688 0.01 0.002-0.013
SEX2 0.2719 0.11486 2.367 0.02 0.047-0.497

SMOKSTAT2 −0.1179 0.07925 −1.487 0.14 −0.273-0.037
SMOKSTAT3 −0.2742 0.11507 −2.383 0.02 −0.500- −0.049
QUETELET −0.0333 0.00613 −5.438 <0.001 −0.045- −0.021

VITUSE2 −0.0349 0.09553 −0.366 0.71 −0.222-0.152
VITUSE3 −0.2980 0.08726 −3.414 <0.001 −0.469- −0.127

CALORIES −0.0001 0.00006 −1.704 0.09 −0.0002-0.000
FIBER 0.0300 0.00710 4.230 <0.001 0.016-0.044

Dispersion
Model

Constant −0.3602 0.2361 −1.526 0.13 −0.823-0.103
FIBER −0.0484 0.0170 −2.840 0.01 −0.081- −0.015

BETADIET 0.0002 0.0001 2.264 0.02 0.000-0.004
VITUSE2 −0.3159 0.2092 −1.510 0.13 −0.725-0.094
VITUSE3 −0.4284 0.1937 −2.211 0.03 −0.808- −0.049

shows any systematic departure, indicating no lack of fit 
of the selected final models.

Fitted mean and variance models (Table 8) of plasma 
beta-carotene levels, respectively are: 

μ̂ z=5.2161+0.0074x1+0.2719A2−0.1179B2
−0.2742B3−0.0333x4−0.0349C2−0.2980C3
−0.0001x6+0.0300x8                                (1)

σ̂ 2
z=e−0.0302−0.0484x8+0.0002x11−0.3159C2−0.4284C3         (2)

Retinol Plasma Levels Data Analysis
This subsection presents the analysis of plasma levels of 
retinol, which is treated as the response variable, and other 
variables are treated as explanatory. Joint log-normal 
models (in materials and methods section) are fitted for 
the retinol data, and the results are presented in Table 9. 
The selected models have the smallest AIC value (4168.0 
+ 2× 8 = 4184.0; Table 9) in each class.

Figure 3(a) and Figure 3(b) display the histogram 
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Figure 2. The normal probability plot of the (a) mean and (b) variance for plasma beta-carotene data (Table 2). 

Figure 3. (a) The histogram plot of residuals and (b) the absolute residuals plot with respect to fitted values for plasma retinol 
data (Table 3).

of residuals and absolute residuals plot with respect to 
fitted values. Figure 3(a) does not show any lack of fit 
for missing variables.  Figure 3(b) is a flat diagram with 
the running mean, indicating that variance is constant 
under the joint GLM log-normal fitting. Figure 4(a) and 
Figure 4(b) display respectively the normal probability 
plot for the mean and variance model in Table 9. Normal 

probability plots do not show any systematic departure, 
indicating no lack of fit of the selected models.

Fitted mean and variance models (Table 9) of plasma 
retinol levels, respectively, are:

μ̂ z=6.159+0.004x1+0.080B2+0.003B3−0.001x7     (3)

σ̂ 2
z=e−1.9126−0.7379A2+0.0001x11        (4)
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Table 9. Results for mean and dispersion models of plasma retinol data from log-normal fit.

Mean 
Model

Covariate Estimate s.e. t P-value 95% C.I.

Constant 6.159 0.08375 73.53 <0.001 5.995-6.323

AGE 0.004 0.00126 3.53 <0.001 0.006

SMOKSTAT2 0.080 0.03905 2.06 0.04 0.003-0.156

SMOKSTAT3 0.003 0.05372 0.06 0.95 −0.102-0.108

FAT −0.001 0.00054 −1.62 0.11 −0.002-0.000

Dispersion
Model

Constant −1.9126 0.2457 −7.784 <0.001 −2.393- −1.431

SEX2 −0.7379 0.2373 −3.109 <0.001 −1.203- −0.272

BETADIET 0.0001 0.0001 2.399 0.02 0.000-0.003

Discussion

Table 8 (or equation 1) shows the parameters age, 
sex, smoking status, quetelet, vitamin use, consumed 
calories, and fiber intake are statistically significant 
(P-value ≤ 0.09) factors of mean plasma levels of beta-
carotene. Mean plasma levels of beta-carotene increases 
with  age, consumed fiber intake, regular vitamin use, 
and is higher in female sex, and decreases during higher 
calories intake,  quetelet, and current smoking status. 
Note that smoking status (1 = never, 2 = former, and 3 = 
current) is negatively associated with beta-carotene. This 
indicates that if smoking status increases, beta-carotene 

decreases, and vice versa. So, beta-carotene will be 
minimum for maximum smoking status (i.e., 3 = current 
smokers). Also, vitamin use status (1 = yes, fairly often, 
2 = yes, not often and 3 = no) is negatively associated 
with beta-carotene. In that vitamin status is numbered 
inversely to the frequency of vitamin intake (Table 1), this 
indicates that if vitamin use status decreases, beta-carotene 
increases; inversely, then, beta-carotene will be maximum 
for maximum vitamin intake (i.e., 1 = yes, fairly often). 
Mean beta-carotene is positively associated each with age 
and fiber consumed, and it is negatively associated each 
with quetelet and calories consumed. Table 8 (or equation 
(2)) shows that higher fiber intake, dietary beta-carotene, 

Figure 4. The normal probability plot of the (a) mean and (b) variance for plasma retinol data (Table 3).
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and supplementary vitamin use status significantly affect 
the variance of plasma beta-carotene. Fiber intake is 
negatively, while dietary beta-carotene is positively 
associated with variance of beta-carotene. Thus, higher 
fiber intake, infrequent and no regular vitamin use, and 
low dietary intake of beta-carotene decrease the variance 
of plasma beta-carotene.

Table 9 (or equation 3) shows that age and former 
smoking status are directly and significantly associated  
with plasma retinol levels. This indicates that mean plasma 
retinol levels increases with age and at former smoking 
status. Mean plasma retinol levels is partially  significant 
(P value = 0.11)  with fat intake.   The association between 
plasma retinol levels and fat intake is negative, indicating 
that plasma retinol levels decrease with increased fat 
consumption. Table 9 (or equation 4) shows that dietary 
beta-carotene is directly, while female sex is inversely 
associated with the variance of plasma retinol. This 
indicates that variance of plasma retinol levels is lower 
in female sex, and increases with higher intake of dietary 
beta-carotene.

This article focuses  on the determinants of plasma 
levels of beta-carotene and retinol.  Responses data are 
positive, so the probability model is log-normal or gamma 
[25]. Both the responses plasma beta-carotene and retinol 
levels are identified as non-constant variances  (Tables 
3–7).  Thus, joint models of mean and variance are derived 
using log-normal distribution. The present article has 
examined both the joint log-normal and gamma models 
[22]. Observation indicates  that joint log- normal models 
fit much better than gamma models, therefore, only the 
results of joint log-normal models are reported.

Tables 2–7 present the results of descriptive statistics. 
The variations of plasma levels of beta-carotene and retinol 
with respect to the explanatory variables are displayed in 
Tables 3–7. These results (Tables 3–7) are redundant, and 
also helpful to the analyzer.  The main results are given 
in Tables 8-9; these results are supported by Tables 3–7.  
Tables 3–7 are displayed for better readability of the 
paper. These results are statistically insignificant. 

Early researches pointed out that   the variances of 
plasma levels of both the beta- carotene  and  retinol 
are non-constant [5, 26]. Those researches derived 
the mean model based on logarithm transformation of 
responses. This present study has derived both the mean 
and variance of plasma beta-carotene and retinol models 
based on joint GLM (Results Sections). Most of the 
present results are supported  by early researches  [5, 
27,28].  However, some of the present results are little 
cited in the literature. For example, the present analysis 
first derived the determinants of the variances of both 
plasma beta-carotene and retinol (Results Section). 
Moreover, some additional factors were identified in 
the mean models (Results Section). As a result of this 

approach, this report attempts to remove some conflicts of 
earlier researches.  For instance, in the literature, there are 
conflicting reports on the effects of alcohol, cholesterol 
intake, and age on plasma levels of beta-carotene. Earlier 
researches noted that ethanol drinkers have lower levels 
of plasma beta-carotene [3, 12]. However, Table 5 shows 
that alcohol consumers have higher levels of plasma 
beta-carotene. Table 10 presents the analysis of plasma 
levels of beta-carotene with the additional factors, alcohol 
and cholesterol. Analysis (Table 10) shows that alcohol 
and cholesterol intake are statistically insignificant, 
as statistically results are considered significant at a 
maximum of 5%. In epidemiology, partially significant 
factors (treated as confounders) are considered, as they 
may have some effects on the responses. In view point 
of epidemiology, alcohol intake is marginally significant 
(P-value = 0.19), and it is positively associated with the 
mean plasma beta-carotene level (supported by Table 5). 
Cholesterol intake (Table 10) is partially (P-value = 0.26) 
inversely associated with the variance of plasma beta-
carotene (supported by Table 6). 

Results subsections present the statistically significant 
determinants of plasma levels of both the beta-carotene 
and retinol (Tables 8, 9). For example, quetelet is inversely 
associated with plasma beta-carotene levels. This 
indicates that many obese persons have lower blood levels 
of plasma beta-carotene, even after adjustment for dietary 
intake.  Obese persons have large volumes of fat stores.  
However, fat store is inversely (partially significant) 
associated with beta-carotene levels. Fat, as the partially  
significant factor, is not shown in Table 8, but it is close 
to significant (P-value = 0.11) in Table 9. Thus,  plasma 
beta-carotene level is lower for many obese people due 
to their large volumes of fat stores. This conclusion is 
simply derived from the mathematical relationship. In 
view of pharmacokinetic mechanisms, however, fat may 
dissolve ingested vitamins. Consequently, the vitamin 
level will be low, indicating a low level of plasma beta-
carotene.

This study found age to be directly associated with 
both the plasma levels of beta-carotene (Table 8) and 
retinol  (Table 9) (supported by Table 3). Many research 
reports missed this factor [5]. Both the blood levels of 
plasma  beta-carotene and retinol will increase with  age. 
This may be due to physiological age-related changes in 
the human  body. Moreover, this study identifies fiber and 
calorie intake, respectively, posi t ively and negatively 
associated with plasma levels of beta-carotene (Table 
8). These two findings were also missed by many earlier 
researches [5]. Other findings such as the relationships 
of carotenoids to female sex, vitamin use, quetelet, 
and smoking status are  partially supported by earlier 
researches [5, 12, 27].  For example, female sex is only 
directly significant with the mean  plasma levels of beat-
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Table 11. Comparison between earlier and present findings.

Variable Model Response Earlier findings Present Findings

Mean BETAPLASMA
AGE (x1) “ “ Not identified +vely significant
SEX (A) “ “ Female, +vely significant Female, +vely significant

VITUSE (C) “ “ 1=Yes, fairly often, + vely 1=Yes, fairly often, + vely
SMOKSTAT(B) “ “ 3= Current Smoker, -- vely 3= Current Smoker, --vely
ALCOHOL(x9) “ “ -- vely significant Insignificant

CHOLESTEROL(x10) “ “ -- vely significant Insignificant
FIBER(x8) “ “ Not identified +vely significant

CALORIES(x6) “ “ Not identified --vely significant
QUETELET(x4) “ “ --vely significant --vely significant

Variance “
FIBER(x8) “ “ Not identified --vely significant

VITUSE (C) “ “ Not identified --vely significant
BETADIET(x11) “ “ Not identified +vely significant

Mean RETAPLASMA
SEX (A) “ “ Female, +vely significant Insignificant
AGE (x1) “ “ Not identified +vely significant

SMOKSTAT(B) “ “ Not identified 2=Former, +vely significant
Variance “

SEX (A) “ “ Not identified --vely significant
BETADIET(x11) “ “ Not identified +vely significant

Table 10. Results for mean and dispersion models of plasma beta-carotene data from log-normal fit.

Mean
Model

Covariate Estimate s.e. t P-value

Constant 5.2534 0.31097 16.894 0.00
AGE 0.0067 0.00276 2.424 0.02
SEX2 0.2833 0.12846 2.205 0.03

SMOKSTAT2 −0.1366 0.07826 −1.746 0.08
SMOKSTAT3 −0.3014 0.11325 −2.661 0.02
QUETELET −0.0319 0.00601 −5.300 0.00

VITUSE2 −0.0346 0.09389 −0.369 0.71
VITUSE3 −0.2969 0.08727 −3.402 0.00

CALORIES −0.0002 0.00007 −2.369 0.02
FIBER 0.0337 0.00733 4.597 0.00

ALCOHOL 0.0047 0.00358 1.301 0.19

Dispersion
Model

Constant 0.2220 0.3916 0.567 0.57
FIBER −0.0493 0.0169 −2.912 0.01

BETADIET 0.0002 0.0001 2.388 0.02
VITUSE2 −0.3259 0.2111 −1.544 0.12
VITUSE3 −0.4566 0.1968 −2.320 0.02

SEX2 −0.4658 0.2587 −1.800 0.07
CHOLESTEROL −0.0008 0.0007 −1.120 0.26
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carotene, but not with retinol. Current smoking appears 
to lower the mean plasma levels of beta-carotene (Table 
8), but former (not current) smoking may increase plasma 
levels of retinol (Table 9). Determinants of plasma retinol 
levels found in this study also differ from many early 
researches’ reports.

Finally,  determinants of variances  of  both plasma 
levels of beta-carotene and  retinol found  in this study 
are completely new findings.  For Beta-plasma analysis, 
only three factors sex, vitamin use, quetelet are identified 
as confirmatory of earlier findings. The factors age, 
alcohol intake, cholesterol are identified as the conflicts 
of earlier findings. The factors fiber, calories (mean model 
(1)) and fiber, vitamin use, beta-diet (variance model (2)) 
are all the new findings in the literature (Table 11). For 
retinol plasma analysis, all the factors age, sex, smoking 
status, beta-diet are completely new information in the 
literature (Table 11).  This  study may provide substantial 
new factors to explain the human pharmacology of  both 
plasma levels of beta-carotene and retinol.

Materials and methods

Some continuous positive measurements  in  practice 
have non-normal error distributions, and the class of 
generalized linear models includes distributions useful 
for the analysis of such data. The problem of non-
constant variance in the response variable y  in linear 
regression is due to  departure from the standard least 
squares assumptions. Transformation of the response 
variable is an appropriate method for stabilizing the 
variance of the response. For heteroscedastic data, the 
log-transformation is often recommended for stabilizing 
the variance [23]. However, in practice the variance may 
not always be stabilized despite proper transformation 
[20]. Box [29] proposed the use of linear models with 
data transformation.

For example, when
E(Yi)=µi      and       Var(Yi)=σi

2µi
2,

the transformation Zi=log(Yi) gives stabilization of 
variance Var(Zi)≈σ2. However, if a parsimonious model 
is required, a different transformation is needed. Thus, 
the single data transformation may fail to meet various 
model assumptions.  Nelder and Lee [30] proposed using 
joint generalized linear models (GLMs) for the mean and 
dispersion.

When the response Yi  is constrained to be positive log 
transformation Zi=logYi  is used. Under the log-normal 
distribution, a joint modeling of the mean and dispersion 
is such that:

E(Zi) = μzi     and      Var(Zi) = σzi
2 ,

μzi = xi β
t       and      log(σzi

2) = gi γ
t  ,

where xi 
t  and gi 

t  are the row vectors for the regression 
coefficients β and γ in the mean and dispersion model, 
respectively. Lee and Nelder [31] studied the estimation of 
joint modeling of the mean and dispersion, and proposed 
to use the maximum likelihood (ML) estimator for the 
mean parameters β and the restricted maximum likelihood 
for the dispersion parameters γ. The restricted likelihood 
estimators  have proper adjustment of the  degrees of 
freedom by estimating  the  mean  parameters, which is 
important in the analysis of data from quality  engineering 
because the number of parameters of β is often relatively 
large compared with the total sample size [21]. 

Joint GLM method of estimation: Two interlinked 
models for the mean and the dispersion (or variance) are 
based on the observed data (yi) and gamma deviance di, 
where di = 2{–log(yi / μ̂ j ) + (yi – μ̂ j ) / μ̂ j }. Regression 
parameters are estimated by iterative weighted least 
squares (IWLS) method using the dispersion values 
which have a direct effect on the estimates of regression 
parameters. The whole computation is performed using 
two interconnected IWLS methods which are:

1. Given γ̂  and the dispersion estimates, we use IWLS to 
update β̂  for the mean model,

2. Given β̂  and the estimated means, we use IWLS to 
update γ̂  with deviances as data. 

The above two steps of iteration is continued until it 
converges. More detailed discussions of joint generalized 
liner models have been described [22, 31-34]. 
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