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The paper "The Apoe-/- Mouse PhysioLab® Platform: 
A Validated Physiologically-based Mathematical Model 
of Atherosclerotic Plaque Progression in the Apoe-/- 
Mouse" by Jason Chan and colleagues [1] published in 
BioDiscovery 2012; 3: 2 is significant for several reasons.  
The pharmaceutical and biotechnology industries have 
become quite proficient at rational drug design, but rational 
drug development has not progressed as quickly (and 
development costs represent at least 70% of the billion dollar 
cost of taking a new chemical entity from conception to 
market).  The reasons are clear: with the possible exception 
of antiinfectives, drugs for most therapeutic indications 
involve perturbations of complex interactive systems, our 
preclinical models all involve sweeping simplifications, 
and clinical trials usually involve heterogeneous groups 
of patients.  Systems pharmacology approaches present 
one approach to addressing this complexity.  Genetically 
engineered animal models offer useful approximations to 
human disease, but an animal model supplemented by a 
computational disease model greatly increases the range 
of questions that can be asked.  Atherosclerosis presents 
a case in point: its aetiology is complex, it is affected by 
environmental and behavioural factors, including diet and 
smoking, and it may take several decades for the condition 
to progress to clinical disease. The Apoe-/- mouse reflects 
many of the features of human atherosclerosis, but there are 
important differences: in humans the dominant circulating 

atherogenic particles consist of LDL, while in the Apoe-
/- mouse VLDL and IDL predominate.  How do these 
differences affect the ability of the mouse model to predict the 
outcome of drug treatment or lifestyle changes in humans? 
Another limitation of the mouse model is that, despite its 
biological similarities with human atherosclerosis, it does 
not lead to the same clinical outcomes of angina and heart 
attack.  Why is that? Given these limitations of the mouse 
model, can it still guide the development of prevention 
and treatment regimens to reduce the incidence of human 
heart disease?  Chan et al have presented a computational 
model of atherosclerotic progression that has the potential 
to improve the predictive power of animal models of the 
disease, and (when the model is extended from mice to 
humans) to enable in silico clinical trials. 

The Chan et al. model, based upon the Apoe-/- 
mouse, includes elements of cholesterol and macrophage 
trafficking, inflammation, oxidative stress, endothelial 
function, and thrombosis.  It has the ability to predict 
relationships between biomarker data, pharmacodynamic 
effects and clinical outcomes.  The model is the outcome of 
a collaboration between Entelos, an in silico modelling and 
simulation company, and Philip Morris, a tobacco company.  
A primary motive for developing the model appears to have 
been a desire to explore the relationship between smoking 
(and smoking cessation) and heart disease. However, the 
scope of the model is broad enough to enable it to be used 
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to model the effects of other lifestyle factors, including diet, 
and of drug treatment.  As an example of drug effects, the 
model is used to predict effects of ezetimibe (which blocks 
cholesterol absorption from the intestine) on atherosclerotic 
progression.  By publishing the model in Biodiscovery, the 
authors have agreed to make it available, free of charge, to 
all researchers.

In the past, drug developers have regarded 
computational models of complex biological systems 
with great scepticism.  There has been an impression that 
the systems involved are so complex that any attempt to 
describe them mathematically must involve simplifying 
assumptions that were likely to undermine the dynamics 
of the system being modelled.  There was pessimism about 
the ability to validate such large models (the Chan et al. 
model contains 94 ordinary differential equations, 524 
algebraic equations, and 3,508 parameters).  Yet these same 
drug developers have for eighty years relied heavily upon 
pharmacokinetic (PK) models in making drug development 
decisions, and PK models make equally sweeping 
simplifications.  Why the difference?  Two reasons: the 
first is that PK is a generic technology.  We can use the 
same analytical methods to measure plasma levels of an 
antihypertensive as we use for an antidepressant, whereas 
the biological or pharmacodynamic (PD) endpoints 
that we use in disease modelling are different for every 
therapeutic area and for every drug class.  Secondly, the 
mathematics of disease modelling and PD modelling is 
more complex.  Both these factors still present barriers to 
wider use of disease modelling, but the barriers are yielding 
to advances in technology.  Development of prognostic and 
pharmacodynamic biomarkers (and to an increasing extent, 
whole-body imaging techniques) is making it easier to 
collect the data required to validate complex models.  In 
a recent review [2] I discussed the use of PD models of 
biomarker data in oncology.  At present, regulatory approval 
of anticancer drugs requires clinical endpoints, which for 
slowly-progressing tumours means drug development 
times often in excess of ten years.  Demonstrating and 
validating the predictive power of PD biomarkers in the 

context of computational disease models has the potential 
to revolutionise clinical drug development.

In recent years, computational disease models have 
been published covering a wide range of therapeutic 
areas.  In HIV disease, we are presented with a complex 
interactive system where the immune system attacks the 
virus, and the virus attacks the immune system.  Predicting 
PD effects of antiviral drugs requires a model that captures 
these complexities.  Because of the very high mutation 
rates of retroviruses, in the early days of anti-retroviral drug 
development there was pessimism about whether sustained 
responses could be achieved in the face of acquired drug 
resistance.  A disease model predicted, correctly, that with 
the use of multi-drug combinations, and with sufficient 
treatment intensity, disease progression could be arrested 
for many years [3].  In oncology, models of the cancer 
cell cycle [4] and three-dimensional virtual tumours have 
been used to predict optimal drug combination schedules 
[5].  Disease models have been described for diabetes, 
rheumatoid arthritis, hypertension and skin ageing [6].

These disease modelling approaches, formerly the 
province of theoreticians, are beginning to interest the 
wider drug development community.  Quintiles, a major 
clinical research organization, recently published an 
extensive report on modelling and simulation practice 
throughout the drug development process [7].  In this 
report they note the increasing acceptance by the US 
Food and Drug Administration (FDA) of modelling and 
simulation studies in support of applications for marketing 
approval.  As an example, they cite the FDA’s Office of 
Clinical Pharmacology recommending concentration-QT 
modelling as a means of evaluating drug potential for QT 
interval disturbance [8].  Models such as that of Chan et 
al. are advancing the technology of computational disease 
modelling.  In the long term, they should make possible 
higher success rates in clinical development, design of 
rational combination therapies, and tailoring of clinical 
protocols to individual patients.  This is an ambitious 
agenda, but this paper represents a step in the right 
direction.
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