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Introduction                                                             

The biochemistry of induction and progression of cancer 
is complex and highly variable from tumour to tumour.  
Over 300 oncogenes and tumour suppressor genes have 
been documented, that is, genes that when mutated, 
amplified, or partially deleted are associated with 
malignant transformation.  It has been suggested that up 
to six of these oncogenic mutations may be necessary for 
full expression of the malignant phenotype. For example, 

Hanahan and Weinberg [1] describe six “hallmarks of 
cancer” that characterise most malignant cells: ability to 
proliferate in the absence of an external growth stimulus; 
loss of response to negative growth regulation; loss of 
response to physiological death signals;  biochemical 
changes that make cells potentially immortal (e.g. 
expression of telomerase), loss of growth-inhibitory 
contact signals (resulting in invasiveness and metastasis); 
and ability to survive and proliferate in conditions of 
hypoxia.  These generalisations represent a valuable 
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Abstract 

We postulate the two checkpoints theory of cancer, a model of cancer development suggesting that malignant 
transformation of cells requires loss of function of both the G1 checkpoint and the mitotic spindle checkpoint. 
Malignant progression can be described as a process analogous to a genetic algorithm, which we term the 
malignant progression algorithm.  There are two prerequisites for this process: first, there must be competition 
for reproductive resources, and this is driven by loss of the G1 checkpoint; second, there must be a source of 
genetic variation, and this is provided by loss of the mitotic spindle checkpoint, resulting in aneuploidy.  These 
two factors then trigger a process of Darwinian selection, driving the emergence of cells with the various 
abnormalities that have been termed the “hallmarks of cancer”.  Malignant progression is iterative, autocatalytic, 
and irreversible.  The process can be modelled mathematically by describing the system as a finite state machine.  
The model indicates that loss of the two checkpoints is necessary and sufficient for tumour progression.  The 
order of loss of the two checkpoints appears to be important: loss of the G1 checkpoint results in premalignant 
cells that replicate independently of physiological growth signals, but which remain diploid.  Loss of the mitotic 
spindle checkpoint then results in aneuploid, malignant cells with highly error-prone replication, which rapidly 
progress to invasive, metastatic, hypoxia-tolerant, immortalised cells.  This model of malignant progression has 
implications for the selection of anticancer drug targets and for tumour prevention strategies. 
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simplification of an otherwise intractably complex 
pattern of changes in malignancy.  One interpretation of 
this hypothesis is what may be termed the “restaurant 
menu” view of cancer: the combination of one oncogene 
causing enhanced cell proliferation, plus one oncogene 
causing loss of apoptosis, plus one oncogene causing 
tolerance of hypoxia, etc. will result in a fully 
transformed cell.  This view is substantially correct, but 
is not necessarily the simplest interpretation of the data, 
and fails to capture the characteristic dynamics of 
malignant transformation.  The resemblance of malignant 
progression to a process of Darwinian selection has been 
remarked upon by many authors (reviewed by Cahill et 
al. [2]).  In this view, cancer is the result of progressive 
accumulation of somatic mutations, each of which 
confers a selective proliferative advantage on those cells 
that possess it.  This undoubtedly occurs, but the 
dynamics of malignant progression suggests that it may 
not be the whole story. A number of authors have 
recently postulated that the essential event in malignant 
transformation is loss of function of the mitotic spindle 
assembly checkpoint [3-6].  When this checkpoint 
functions correctly, it acts to prevent progression to 
anaphase until the replicated chromosomes are correctly 
attached to the two centrosomes in the M phase cell: one 
member of each pair of replicated chromosomes is 
attached to each of the opposite spindle poles, so that 
each of the daughter cells receives one, and only one, of 
each of the pairs of replicated chromosomes.  Failure of 
this checkpoint results in mitotic abnormalities – 
monopolar spindles, multipolar spindles, polyploidy and 
aneuploidy.  As pointed out by Duesberg [5], all cancers 
are aneuploid to some degree.  Loss of control of the M 
checkpoint results in genetic variability, but the 
dynamics are very different from a process of 
accumulation of somatic mutations: the abnormalities 
are much more frequent, more drastic, and much more 
likely to result in non-viable cells, or cells that are viable 
but unable to replicate.  However, a fraction of the 
aneuploid cells retain enough of the genome that they are 
able to replicate free of physiological constraints. 

We postulate that cancer is the result of dysfunction 
of two cell cycle checkpoints, the retinoblastoma protein-
controlled late G1 checkpoint, and the mitotic spindle 
assembly checkpoint (the M checkpoint).  Loss of control 
of these checkpoints has been described in cancer by 
many authors [3-8], and these events have been 
considered to be part of the multi-stage process often 
described as malignant progression.  

In order to describe the dynamics of complex 
interactive systems it is usually necessary to make 
simplifying assumptions.  An approach introduced by 
Von Neumann [9] was to approximate the potentially 
infinite number of states of such a system by a finite 
number of states, which may be inter-converted 
according to a set of transition rules, and calculating the 

state transitions that are assumed to occur over a series of 
discrete time intervals.  This kind of model, termed a 
finite state machine [9-11] has been applied to a wide 
range of biological problems. 

Results 

The finite state machine was first used to examine the 
consequences of a model of malignant progression in 
which the transformation of a normal cell into an 
invasive, metastatic malignant cell proceeds by a series 
of four or more somatic mutations.  This model of 
malignant progression, which we term the multistage 
somatic mutation hypothesis, is summarised in Figure 1.  
It may be described briefly as follows:  Malignant 
progression requires multiple sequential somatic 
mutations.  Each of these mutations confers a survival 
advantage on the cells carrying it, so that the proportion 
of cells in the total population that carries that mutation 
increases.  When the number of cells bearing the first 
mutation is sufficient, there is a high likelihood that a 
second mutation will occur, which will confer a further 
selective advantage on the doubly mutant cells, whose 
population then rises until a third mutation becomes 
probable, and so on.  We assume that the total number of 
dividing epithelial stem cells in a mouse is 1 x 107, that 
the mutation rate for somatic mutations is 3 x 10-7 per cell 
division [12], that normal mouse stem cells (P1 cells in 
Figure1) have a doubling time of 24 hr [13,14], fully 
transformed cells (P5) have a doubling time of 12 hr [15], 
with partially transformed cells (P2, P3, P4) having 
intermediate doubling times and that the life span of a 
mouse is 1000 days.   
 

 

The lower limit for macroscopic detectability of a tumour 
is assumed to be 107 cells.  A computer program that 
models the system of Figure1, termed FINITE4, is listed 
in the supplementary material.  Running the program 
with the parameter values given above predicted that the 
lifetime probability of tumour incidence in a mouse was 
about 0.5%.  (Simulation 1: complete output from the 
simulations is provided in the supplementary 

 

 

 

Figure 1.  The four-step random order mutation model.  P1 denotes 
normal epithelial cells and P2 – P5 denote phenotypes that 
cumulatively express the preceding mutations; m1 – m4 are mutation 
rates.  

 

#]===m4 are mutation rates. 

http://www.biodiscoveryjournal.com/Content/Articles/PDF/Modelling_malignant-_progression_supplementary.pdf
http://www.biodiscoveryjournal.com/Content/Articles/PDF/Modelling_malignant-_progression_supplementary.pdf
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information).  If the assumed mutation rate was decreased 
to 2 x 10-7 the predicted lifetime tumour incidence fell to 
less than 0.1% (Simulation 2).  When the mutation rate 
was increased to its probable upper limit of 1 x 10-6 the 
model still did not predict the appearance of a palpable 
tumour within the 1000 day lifetime (Simulation 3).  It 
was concluded that the dynamics of the multistage 
somatic mutation model are incompatible with the 
observed lifetime incidence of spontaneous tumours in 
mice of a few percent. 

The alternative theory of malignant progression, the 
Duesberg hypothesis [4], can be modelled by assuming 
that the obligatory first step is formation of an aneuploid 
cell (Figure 2).  This has two important consequences for 
the daughter cells.  First, a high proportion of aneuploid 
cells will die because they lack genes that are essential 
for survival.  Following an unequal distribution of 
chromosomes at cell division, the spontaneous cell loss 
factor is usually at least 50%, and may be greater than 
90% [16].  The aneuploid cells that contain all the genes 
essential for survival can then go into successive cell 
divisions without excessive cell loss.  However, since 
they are likely to lack one or more of the genes required 
for DNA proofreading, DNA repair, or accurate control 
of the mitotic spindle checkpoint, they tend to be 
genetically unstable, and effective mutation rates are now 
greatly increased. Modelling this situation using the 
program FINITE7 (Supplementary material) predicted a 
zero probability of tumour incidence at 1000 days 
(Simulation 4).  P2 cells appeared, but never reached a 
large enough population to produce P3 or P4 cells.  
Because P2 cells have the same doubling time as P1 cells, 
but a greater spontaneous cell loss rate (ka), they are 
unable to compete with the dominant P1 population, and 
will inevitably become extinct.  As Duesberg correctly 
points out, all cancers are aneuploid, so his theory must 
be essentially correct, but the modelling study shows that 
it cannot be the whole truth.   

 
 

 
 
 
 
 
Figure 2.  The Duesberg model of malignant progression; m1 is a 
mutation that causes genetic instability.  ka is the rate constant for 
apoptosis. Other abbreviations are as defined in the legend to Figure 1.  
Asterisks indicate mutation rates that are modified as a result of 
genetic instability. 

Consideration of the competition between the various 
normal and mutant cells suggested that a mutation that 
significantly decreased the cell doubling time might 
overcome the competitive disadvantage resulting from 
aneuploidy.  This situation, shown in Figure 3, was 
modelled (Simulation 5).  The first mutation, m1, 
represents loss of function of the G1 checkpoint, with a 
resulting change in the cell doubling time from 24 hours 
to 12 hours.  P2 cells have a functional M checkpoint, so 
they are diploid.  The second mutation, m2, causes 
defective function of the M checkpoint.  It was assumed, 
initially, that the cell loss factor of P3 cells was 0.1, and 
that mutation rates downstream from the appearance of 
aneuploidy were increased by 100-fold.  The model now 
predicted a lifetime tumour incidence in mice of 3.7%, in 
rough agreement with observation.  Spontaneous tumour 
incidence in mice varies between strains, but is typically 
a single-digit percentage [17].  What the model suggests, 
therefore, is that the development of a tumour requires 
loss, first of the G1 checkpoint, then of the M checkpoint, 
which is followed by additional mutations at a relatively 
high rate.  I shall refer to this modified Duesberg model 
as the two checkpoint model.  The fact that this model is 
consistent with observed tumour incidence in mice, but 
the four-stage somatic mutation model and the Duesberg 
model are not, is not in itself proof that the two 
checkpoint model is correct.  However, there is a great 
deal of experimental evidence in support of the two 
checkpoint model.  Cells in which the G1 checkpoint is 
lost but the M checkpoint remains intact, corresponding 
to P2 cells in figure 3, are frequently observed.  In skin, 
these cells form moles which are described as 
“premalignant”.  These cells are diploid, they are not 
invasive or metastatic, and they remain localised.  Skin 
cells infected by human papilloma viruses (HPV) lose G1 
checkpoint function, and form warts.  Cells in the 
intestinal epithelium that lose the G1 checkpoint form 
intestinal polyps; again, these are diploid, and non-
invasive, but are regarded as premalignant because the 
risk of them undergoing further mutation to a malignant 
growth is about a million times greater than for a normal 
cell.  However, cells that have a defective M checkpoint 
but retain a functional G1 checkpoint have not been 
reported. Comparison of Simulation 4 and Simulation 5 
shows that, for malignant transformation to occur, the 
order in which the checkpoints are lost is important.  If 
loss of the M checkpoint occurs in the presence of a 
functional G1 checkpoint, the mutant (P2) population 
remains too small to progress further.  This is because 
loss of the M checkpoint, with the resulting aneuploidy, 
results in a high cell loss fraction, which coupled with the 
unchanged doubling time, means that the P2 population 
is not self-sustaining.  In contrast, when the G1 
checkpoint is lost first, the cell growth rate is increased, 
and the P2 population increases rapidly.  Now, when a 
subsequent mutation causes loss of the M checkpoint, the 

http://www.biodiscoveryjournal.com/Content/Articles/PDF/Modelling_malignant-_progression_supplementary.pdf
http://www.biodiscoveryjournal.com/Content/Articles/PDF/Modelling_malignant-_progression_supplementary.pdf
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essentials are in place for a Darwinian selection process 
to occur: successful competition for reproductive 
resources (imposed by the limited growth surface and the 
rapid growth rate) and genetic variability (resulting from 
inaccurate chromosome segregation). 

  

 
These calculations suggested that loss of the G1 

checkpoint and of the M checkpoint are necessary and 
sufficient for neoplastic transformation and malignant 
progression to occur (the two checkpoints theory of 
cancer).  Loss of the two checkpoints enables a process of 
Darwinian selection in which the selective pressure is 
provided by competition for reproductive resources and 
genetic variability is provided by error-prone mitosis, a 
consequence of loss of the M checkpoint.  This malignant 
progression algorithm (a form of genetic algorithm) is 
iterative, autocatalytic, and irreversible (Figure 4).   

 

 
 

 
 
Figure 4.  The malignant progression algorithm.  The dashed line 
indicates a positive feedback loop. 

By programming the malignant progression algorithm in 
the form of a finite state machine we can explore the 
consequences of varying mutation rates, selective 
pressure and other parameters, and elucidate the complex 
dynamics of malignant progression. 

The malignant progression process is parameter-
dependent.  A half-log increase in the mutation rate for 
loss of G1 checkpoint function resulted in a three-fold 
increase in the predicted tumour incidence (Simulation 6).  
A half-log increase in the mutation rate m3 (the 
frequency of mutations downstream from loss of the M 
checkpoint) resulted in a large increase of predicted 
tumour incidence, with all mice predicted to develop 
tumours by the age of 26 months (Simulation 7).  When 
the cell loss factor of M checkpoint-deficient cells was 
decreased by 50%, the predicted lifetime probability of 
tumour development increased 113% (Simulation 8).  
When cell loss factor was increased 50%, lifetime 
probability of tumour development decreased 37% 
(Simulation 9).  If the cell loss rate resulting from 
aneuploid cell division (ka in Figures 2 and 3) passed 
beyond a threshold value of 0.9, the doubly checkpoint-
defective cells could not sustain themselves and 
malignant progression did not occur (Simulation 10).  
This suggests that a possible approach to tumour 
prevention may be to identify agents that cause selective 
apoptosis of cells with a defective M checkpoint.   

In populations where the cell loss factor for aneuploid 
cells was assumed to have the default value the time for 
progression to a detectable tumour depended upon the 
doubling time of G1 checkpoint-deficient cells.  Unlike 
the M checkpoint, which has all-or-none function, the G1 
checkpoint may have partial loss of function (e.g. 
resulting from decreased expression of p16).  A partially 
functional G1 checkpoint will result in a doubling time 
that is shorter than normal, but longer than that of a cell 
that expresses the fully transformed phenotype.  If the 
doubling time of cells with defective G1 checkpoint 
function was increased from the default value of 12 hr to 
21 hr (only slightly shorter than the 24 hr doubling time of 
untransformed cells) the predicted probability of tumour 
occurrence was still 58% of the value with default 
parameters (Simulation 11).  For tumour progression to 
occur, it is necessary for G1 checkpoint-defective cells to 
have a selective advantage over normal cells, but a quite 
small advantage is sufficient.  The other parameter that 
directly affected tumour progression was the maximum 
domain cell count (as defined in “description of the 
algorithm”): when this was reduced by one-third, the 
predicted tumour incidence decreased by one-third 
(Simulation 12), and when the maximum domain cell 
count was increased by one-third the tumour incidence 
increased by one-third (Simulation 13). 

In summary, five parameters determine the ability of a 
tumour cell population to progress: its doubling time, its 
cell loss factor, the mutation rates for loss of checkpoint 

 

Figure 3.  The two checkpoint model of malignant progression.  m1 
represents loss of G1 checkpoint function, and m2 represents loss of 
M checkpoint function. P1 – P5 denote phenotypes as defined in 
Table 1.  Other abbreviations are defined  in the legend to Figures 1 
and 2. 
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function (m1 and m2), and the maximum domain cell 
count. 

We also modelled the situation where the end cells 
did not lose anchorage dependence (Simulation 14: 
modelled by setting m3 and m4 to zero).  The eventual 
proportion of P3 cells (which are transformed but 
anchorage dependent) will depend upon the doubling 
time and the cells’ loss factor, in comparison with the 
other cell types.  Eventually, one cell type will dominate 
the population, but so long as the cells are limited to 
growth on basement membrane, they do not constitute a 
malignant, invasive tumour.  Tumour cells that retain 
anchorage dependence are regarded as the earliest 
transformed cells in the lineage of a tumour, and are 
termed “cancer stem cells”.  These cells may be near-
diploid but they are genetically unstable.  However, 
without further mutations they do not form tumour 
growths.  They remain in the place where they originated.  
In the case of epithelial tumours (such as skin cancers, 
and cancers of the breast, lung and colon) they need to be 
attached to basement membrane in order to survive.  
Adhesion of normal cells (or tumour stem cells) and 
basement membrane is complex, involving several 
families of cell surface receptors and associated 
signalling pathways.  The predominant family of 
adhesion molecules involved in basement membrane 
attachment are known as integrins.  If a mutation occurs 
in an integrin molecule or (more commonly) its 
associated signalling pathway (m3 in Figure 3), a tumour 
stem cell may become able to survive without attachment 
to basement membrane.  Normal epithelial cells that lose 
basement membrane attachment will die, because their 
survival signals require integrin signalling.  A tumour 
stem cell that can survive without membrane attachment, 
no longer has to grow as a flat sheet, but can grow into a 
three-dimensional lump.  It is now said to be an invasive 
tumour.  These cells are shown as P4 in Figure 3.  Such 
tumours are usually curable by surgery, because although 
they may be invasive they remain localised at or near 
their site of origin. 

There are other families of adhesion molecules that 
are involved in attachments between cells.  The 
predominant family of cell-cell adhesion molecules are 
the cadherins. If cadherin signalling becomes non-
functional (mutation m4 in Figure 3) the tumour cells can 
now survive without cell-cell attachment (P5 in Figure 3).  
These cells are now able to detach from the tumour mass, 
and may move to other parts of the body in the 
bloodstream or the lymphatic system, and give rise to 
secondary growths at distant sites.  P5 cells are said to be 
metastatic tumour cells. 

Spontaneous tumours occur in mice, but as in most 
short-lived species, they are comparatively rare. 
However, in transgenic mice carrying a mutation that 
disrupts or over-rides the G1 checkpoint, such as a 
constitutively activated H-ras [18], the so-called 

OncomouseTM, the incidence of tumours may approach 
100%.  Evidently loss of the G1 checkpoint means that 
subsequent tumour development, while still a stochastic 
process, is much more common.  We have modelled the 
situation where the first mutation is assumed to have 
already occurred by starting with all cells possessing the 
P2 phenotype, and using default cell doubling times, cell 
loss factors, and mutation rates to predict the rate of 
progression of such cells to a fully malignant phenotype.  
The model predicted that all mice would have 
macroscopically detectable tumours by the age of 22 
months (Simulation 15). 

Simulation 16 models the situation where anchorage-
dependence may be lost as a result of a single mutation, 
in cells that retain a functional M checkpoint (i.e. in 
diploid cells.)  The calculations predicted that this 
situation should result in formation of a large number of 
diploid metastatic tumours within 90 days.  Diploid 
metastatic tumours are never observed in nature, 
suggesting that simulation 16 was making incorrect 
assumptions.  If we assume that complete loss of 
anchorage-dependence required two (or more) mutations, 
no tumours are seen when loss of anchorage-dependence 
precedes loss of the M checkpoint (Simulation 17).  If we 
revert to the situation where loss of anchorage-
dependence required two mutations to occur after loss of 
the M checkpoint (Simulation 18), the situation is once 
again that of Figure 3, and the lifetime cancer risk in a 
mouse is again predicted to be about 4%. 

 

Discussion 

Previous discussions of tumour progression as a process 
of Darwinian selection [2] have emphasized the 
progressive accumulation of somatic mutations, each 
conferring a selective advantage to the progressively 
more malignant cells, and culminating in the full-blown 
malignant phenotype, bearing all the hallmarks of cancer 

[1].  These events do indeed occur, but this description 
fails to capture the essential dynamics of the process.  
Not all somatic mutations are equal in their effect, and 
mutations that result in a dysfunctional M checkpoint, in 
particular, cause a qualitative change in the dynamics of 
the cell population: cells can no longer segregate their 
replicated chromosomes faithfully, so that the overall 
rate of genetic change increases abruptly.  Many of the 
resulting aneuploid cells will no longer have all the genes 
necessary for survival, so the cell loss factor will show an 
abrupt increase.  This may result in the aberrant 
population becoming extinct, or remaining at too low a 
level for a tumour to form.  However, some fraction of 
the aneuploid cells may survive and replicate.  Since 
these cells, by definition, have all the essential 
housekeeping genes, aneuploid cells after the first 
generation may have a cell loss factor in the normal 
range.  At this stage, another qualitative change may 
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occur: one or more of the replicating aneuploid cells may 
lose its susceptibility to contact inhibition, so that the 
cells become invasive.  

For these events to happen with sufficient frequency 
to generate a tumour, the population of aneuploid cells 
must be large enough that, despite high cell loss and the 
low frequency of the mutation leading to loss of contact 
inhibition, one or more cells bearing this mutation will 
survive and replicate.  This will only occur if the initial, 
contact-inhibited aneuploid cells have a selective 
advantage over their diploid precursors.  This is why loss 
of the G1 checkpoint must precede loss of the M 
checkpoint, why a premalignant stage must precede full  
malignancy: to establish a critical mass of premalignant, 
checkpoint-defective cells, so that the product of the 
probability of the mutation resulting in a non-contact-
inhibited cell and the size of the population of cells at risk 
becomes great enough to overcome the unfavourable 
population dynamics (Figure 5).  This interpretation of 
the required sequence of checkpoint loss is supported by 
the fact that while premalignant lesions (G¯M+) are 
common, there are no reports of aneuploid tumours that 
have an intact G1 checkpoint (G+M¯).  The finite state 
machine predicted that M checkpoint deletion in absence 
of G1 checkpoint dysfunction could in principle result in 
tumour progression, but only at combinations of high 
mutation rate and low cell loss factor unlikely to be 
encountered in practice. 
 

 
 
Figure 5.    Summary of simulations 1 (4-step), 4 (SAC-) and 5 (2-
CKPT).  The Y-axis shows the cumulative probability of tumour 
formation.  The model in which M-checkpoint activity is lost first 
(SAC-) shows zero probability of tumour formation in 1000 days.  For 
the 4-step somatic mutation model the predicted probability was 
0.47%, and for the 2-checkpoint model it was 3.7%. 

 

 
All these features are captured in our malignant 

progression algorithm (Figure 4).  The algorithm 
resembles a classical genetic algorithm [19-21] in 
requiring    competition    for    reproductive    resources  

(a “struggle for survival”, in Darwinian terms), which in 
the case of a premalignant tumour is imposed by limited 
space to grow, often imposed by contact inhibition, by 
hydrostatic pressure, or by the requirement of epithelial 
cells for basement membrane contact. Loss of the G1 
checkpoint provides the selective advantage that enables 
premalignant cells to compete for these resources. As in 
the classical genetic algorithm, the second prerequisite 
for natural selection to occur is a source of genetic 
variability (Darwin's “descent with modification”). Loss 
of the M checkpoint provides an abrupt and frequent 
source of genetic variability, albeit at the cost of an 
increased frequency of spontaneous cell death.  These 
two changes set in train the process of Darwinian 
selection.  As in the genetic algorithm, this is an iterative 
process.  Whereas in evolution the iterations occur with 
the frequency of the organism's reproductive cycle, in the 
malignant progression algorithm, the iterations have the 
frequency of the cell division cycle.  As with the genetic 
algorithm, the malignant progression algorithm is 
autocatalytic: with each successive iteration, the 
proportion of transformed cells in the population 
increases.  Not only that, but the selection process will 
automatically decrease the cell loss fraction of cells 
undergoing spontaneous apoptosis. 

It must be emphasised that the G1 checkpoint is 
complex, and has multiple functions: control of 
progression into S phase in response to growth factors, 
determination of whether a cell in G1 is destined to 
proliferate, remain static, enter apoptosis, or senesce, and 
responding to DNA damage by entering cell cycle arrest 
until the damaged DNA is repaired (or failing that, to 
undergo apoptosis). Although we argue here that all 
tumour cells have a dysfunctional G1 checkpoint, this 
does not necessarily mean that all these functions are 
lost.  Unlike the M checkpoint [22], loss of function of the 
G1 checkpoint is not all-or-none.  It is known that about 
50% of human tumours retain the ability to enter cell 
cycle arrest following DNA damage.  In the present 
discussion, by “dysfunctional” we mean the loss of 
ability to arrest in the absence of external growth factor 
stimulation (thereby developing a growth advantage over 
cells with an intact G1 checkpoint).  The presence of a 
constitutively activated ras gene provides an example of 
G1 checkpoint over-ride, resulting in greatly increased 
spontaneous tumour incidence (Figure 6).  

These then are the defining characteristics of the 
malignant progression algorithm: loss of the G1 
checkpoint provides a competitive survival advantage; 
loss of the M checkpoint provides the required genetic 
variability; Darwinian selection results and increases the 
proportion of transformed cells in the total cell 
population.  The process is iterative, autocatalytic, and 
irreversible.  The order of loss of the two checkpoints is 
essentially obligatory, and is determined by the 
population   dynamics   of    the   system.   In   all    these  
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Figure 6.  Predicted cumulative tumour incidence in mice with 
constitutively activated and wild-type ras genes calculated by the 2-
checkpoint model.  Data plotted from simulations 5 and 15. 

 
 

characteristics, malignant progression follows a classical 
genetic algorithm.  However, it differs in one important 
respect.  As usually implemented, genetic algorithms 
have a fixed objective function, so the system evolves to 
improve the goodness of fit (Darwinian “fitness”).  In the 
malignant progression algorithm, cells are initially 
selected to give maximal proliferation within the 
constraints imposed upon normal cells (e.g. fixed growth 
area), but following loss of the M checkpoint and 
resulting loss of anchorage dependence, this constraint is 
removed, and cells are free to invade other spaces – in 
other words, the objective function has now changed.  
The process thus falls into two stages, selection for 
resources within the constraint of anchorage dependence, 
and unrestrained proliferation once that constraint is 
removed. 

In this sense, the malignant progression algorithm 
reproduces in microcosm certain aspects of the process of 
evolution.  Species that are optimally adapted to their 
environment appear through natural selection.  However, 
if the environmental constraints change, perhaps because 
of a change in climate, or food availability, or because 
the species extends its geographic range, the constraints 
alter, and the selection process may now favour different 
genetic variants that have an advantage under the new 
conditions.  This is the basis of speciation, and the second 
phase of malignant progression, in which a tumour 
becomes invasive and metastatic, appears to follow 
similar dynamics.  The origin of species by natural 
selection has been described as an algorithm [23] and has 
been the topic of extensive modelling studies [24].  It may 
be that certain aspects of evolutionary biology could 
usefully be studied by finite state systems in which the 
switch from adaptation to speciation is modelled by a 
change in the objective function of the genetic algorithm. 

Our studies have modelled the situation where normal  

and premalignant cells are restricted to growth on 
basement membrane, and must compete for space.  This 
describes the kinetics of many epithelial tissues.  It will 
be interesting to model other kinds of tissue kinetics, for 
example, the situation in intestinal villi, where cells 
originate in the crypts, and progress through a finite 
number of divisions (moving along the villi as they do so) 
and are finally sloughed into the gut lumen [25].  Our 
model can be used to study how tumour cell dynamics 
are influenced by the underlying cytokinetics of their 
tissues of origin.   

The two checkpoints theory of cancer has 
implications for selection of anticancer drug targets.  
Given that the multiple routes through the malignant 
progression process first diverge, then converge, are 
targets early or late in the progression cascade likely to 
lead to broader-spectrum drugs than targets in the middle 
of the process?  Given the pivotal role of the M 
checkpoint in tumour progression, will drugs that act on 
this checkpoint, e.g. inhibitors of aurora kinase B [22], 
have particularly favourable pharmacodynamics?  

The two checkpoints theory also has clear 
implications for cancer prevention strategies. Mutations 
to pre-malignancy are essentially inevitable.  They can be 
increased (e.g. by X-irradiation or ultraviolet radiation 
exposure) but not decreased.  In contrast, it may be 
possible to find pharmacological approaches to minimise 
the progression process. The computational approach 
used in the present study can be extended to explore ways 
of doing this. 

 

Description of the algorithm 
 
Depending upon the status of the two checkpoints, we 

consider cells as having one of four genotypes: G+M+, 
G¯M+, G+M¯or G¯M¯.  G+M+ cells, with both 
checkpoints fully functional, are considered to be normal 
cells.  G+M¯ cells and G¯M¯ cells, with a dysfunctional 
M checkpoint, are cancer cells [5].  G¯M+ cells, lacking a 
functional G1 checkpoint, but with a normal M 
checkpoint, are pre-malignant, that is they are able to 
proliferate free of physiological controls, but they are 
non-invasive and non-metastatic. 

G+ cells are assumed to have a fixed doubling time 
(24 hr for the purpose of our model).  G¯ cells may have 
different doubling times, but these will be the same as for 
G+ cells, or faster, because loss of G checkpoint function 
cannot slow down the cellular growth rate. For the 
purpose of most of our simulations we make the 
simplifying assumption that G¯ cells have a doubling 
time of 12 hr.  However, so long as the G¯ cells have a 
selective advantage over G+ cells, however slight, the 
overall dynamics of the system do not change. 

M+ cells are assumed to replicate faithfully: their 
daughter cells will have the same genotype and 
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phenotype as the parent cell except for the rare occasions 
(about one in every few million cell divisions) when a 
somatic mutation occurs.  M+ cells are assumed to be 
anchorage-dependent and contact-inhibited: they will 
replicate until the space available is fully occupied, and 
then stop replicating.  M¯ cells have a finite probability 
(here termed m3) of changing at each cell division.  The 
possible changes are loss of anchorage dependence and 
more rapid doubling time.  In addition, some fraction, ka, 
of M checkpoint-deficient cells is assumed to undergo 
apoptosis; those cells that survive the first doubling may 
then be apoptosis-resistant.  However, cells that have lost 
anchorage-dependence and enter the circulation are 
subject to destruction by various mechanisms (e.g. NK 
cell-mediated cyctotoxicity) so the overall cell loss rate 
may increase at this stage. 

According to this scheme, the four genotypes can 
have one of 7 phenotypes (states) as follows, where DT = 
doubling time in hours, A = anchorage dependence, + or 
–, and where cells that have lost basement membrane 
dependence may or may not retain cell-cell contact-
dependence (Table 1). These seven phenotypes constitute 
the states of the finite state machine. Not all seven 
phenotypes seem to occur naturally: those labelled P6 
and P7 have combinations of mutations that are 
theoretically possible but do not seem to be observed in 
practice.  Those phenotypes that are found naturally are 
labelled P1 to P5 in Table 1. P1 cells are normal, and P2 
cells are pre-malignant – i.e. they have a dysfunctional 
G1 checkpoint, but they are diploid. P3 cells are tumour 
stem cells: they lack both the G1 checkpoint and the M 
checkpoint, but are otherwise minimally transformed.  P4 
cells are aneuploid and have lost attachment-
dependence: they are invasive but not metastatic.  P5 
cells are aneuploid, have acquired additional mutations, 
and show the fully malignant phenotype, i.e. they are 
invasive and metastatic. 

The possible transitions between these cell types, with 
their associated probabilities, are shown in Figures 1 - 3. 

 
Transition rules 

The number of cells in populations P1, P2 .. P5 at time 
t are N1(t), N2(t), .. N5(t). Start with N1(0) cells in population 
P1 at time zero and other populations at zero (i.e. 
simulations start with all normal cells).  At discrete time 
intervals, calculate the number of new cells in each 
population from the previous cell number, time interval, 
and doubling time. From the number of doublings, and 
the transition probabilities (mutation rates) calculate the 
population transitions: 

 

∆P1 = P1 * - m1  
 

∆P2 = P1 * m1 – P2 * m2 
 

∆P3 = P2 * m2 – P3 * (m3 + ka) 
 

∆P4 = P3 * m3 – P4 * m4 
 

∆P5 = P4 * m4  
 

Cell domains 
The genetic algorithm assumes that cells compete for 

resources, but a particular cell does not compete with 
every other cell in the entire body.  The area within 
which competition takes place is geographically 
restricted.  Thus, when a skin stem cell is infected by 
papilloma virus, its G1 checkpoint is overridden and a 
wart develops.  However, it does not cover the whole 
skin surface: the growth of the wart is limited to the area 
fed by a single afferent capillary.  This area will typically 
contain from less than one hundred to a few hundred 
stem   cells.  We   shall  refer  to  this  area  of   stem  cells  

 
Table 1:  States of the finite state machine 

 

  Genotype Possible phenotypes   Ploidy Cell-cell Contact-
Dependent? 

Normal or 
transformed? 

P1 G+M+ DT = 24, A+ diploid yes normal 

P2 G-M+ DT = 12, A+ diploid yes premalignant 

P3 G-M¯ DT = 12, A+ aneuploid yes malignant 

P4 “ DT = 12, A¯ aneuploid yes malignant 

P5 “ DT = 12, A¯ aneuploidy no malignant 

P6 G+M¯ DT = 24, A+ aneuploid ? malignant 

P7 “ DT = 24, A¯ aneuploid ? malignant 
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(within which competition for space and for nutrients 
takes place) as a domain.  Similarly, it is estimated that a 
single intestinal crypt, fed by a single afferent capillary, 
contains about sixty stem cells [25]. 

 
The objective function: 

If the total number of anchorage-dependent cells, Ctotal 
= N1 + N2 + N3, is greater than its allowed maximum 
(AP), the populations of P1, P2 and P3 are reduced in 
proportion: 

N(i),t+1 = N(i),t / Ctotal x AP 
There is no maximum permitted cell number for non-

contact-inhibited cells. 
 

Default parameter values were as shown in Table 2. 
 
Computer programs 

The programs used to run simulations 1 – 18 are listed 
in the Supplementary Information.  An outline of the 
algorithm is given in the appendix. 

 

Appendix 
 
The Genetic Algorithm implemented as a Finite State 

Machine 

 

Initialise cell populations P1 to P6 and total cell number 

↓ 

Calculate proliferation factors for P1 to P6 

↓ 

 

Begin iterative loop 

↓ 

Calculate population transitions from cell numbers and 
mutation rates 

↓ 

Update population numbers to allow for cell transitions 

↓ 

Calculate proliferation of P1 to P6 

↓ 

Call objective function, and re-proportion cell numbers 

↓ 

If tumour size > evaluation size, exit; otherwise repeat 
loop. 
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Table 2.     Default parameter values for the model 

 

Parameter Abbreviation Default value 

Doubling time for normal cells DT[1] 24 hr 

Doubling time for transformed cells DT[2] 12 hr 

Asymptotic normal cell count AP 150 per domain 

Tumour evaluation size EV 1 x 107 cells 

Mutation rates for diploid cells m1, m2, m3, m4 3 x 10-7 per cell division 

Mutation rate for aneuploid cells m2*, m3*, m4* 3.0 x 10-5 per cell division 

Rate constant for apoptosis of aneuploid cells ka 0.1 

http://www.biodiscoveryjournal.com/Content/Articles/PDF/Modelling_malignant-_progression_supplementary.pdf
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